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ON THE KINETIC THEORY OF THERMAL HYDROIBYNAMIC FLUCTUATIONS
IN INHOMOGENEOUS GAS

O. A. GRECHANNYI and V. V. TOKARCHUK

Equations are derived for thermal fluctuations of hydrodynamic fields in inhomo-
geneous gas streams. A modification of the Chapman—Enskog method of deriving
standard solutions of the Boltzmann— Langevin kinetic equation for unbalanced phase
density fluctuation is used. Expressions independent of thermodynamic mean fluxes
are obtained for correlators of external heat lux sources and stress tensor fluct-
uations. Obtained formulas generalize the Landau— Litshitz formulas and extend the
fluctuation-dissipation theorem to the domain of nonequilibrium stable states.

Recent interest in the theory of thermal noise in hydrodynamic systems is due to the
possibility of extending it to the domain of nonequilibrium states. This is particularly im-
portant in the derivation of solutions of problems of simulation of unbalanced system anomal-
ous behavior near the equilibrium threshold.

In the formal application of the equilibrium theory in investigations of unbalanced
fluctuations one is confronted with the problem of determining the simultaneous statistical
characteristics of hydrodynamic fields in the Onsager method, or of determining the statistic-
al properties of external fluctuation sources in the Langevin method. Both problems are in
essence equivalent to the problem of extending the fluctuation-dissipation theorem /1/ to the
domain of unbalanced states. They have a complete solution /2— 4/ at the kinematic level of
the gas system evolution definition, and yield the Boltzmann— Langevin equation for the un~
balanced phase density fluctuation /3/.

Basic equations of the kinetic theory /2— 4/ represent a reasonable basis for .subsequent-
ly passing to the hydrodynamic level of definition of transport processes and nonequilibrium
thermal fluctuations in gas. The results cbtained earlier in this way /5,6/ are substantially
constrained by the condition of local thermodynamic equilibrium, and, consequently, do not
take into account the effect of the system inhomogeneity on the statistical properties of ex-
ternal fluctuation sources in hydrodynamic equations representing a trivial extension of the
equilibrium theory /7/. In investigations of a number of phenomena, in particular of the
anomalous fluctuation increase in the region of stability threshold and their part in the
process of turbulence onset /5,8,9/, it is necessary to take into account the effect of in-
homogeneity on the statistical structure of fluctuating hydrodynamic fields. Investigation
of these effects in gas streams is the subject of this paper.

1. Statistical structure of external fluctuation sources in equations of
gasdynamics. In describing the kinetic development stage of the classical monatomic gas
with allowance for large scale fluctuations we use the concept of random field of macroscopic
densities of the state of system N (f, z) in the p-space whose mean value defines the single-
particle distribution function F(t, 2) = (N (¢, 2)), vhere z = (r, v) normalized with respect to
the particles number N° /2—4/. Generally N (f,z) satisfies the fairly complex nonlinear
stochastic equation /4/. However in the domain of nonequilibrium but stable state of gas, in
which the level of thermal fluctuation intensity 8N =N — F is low, that equation is con-
siderably simplified /10/, splitting into the system of equations of the kinematic fluctua-
tion theory /3/

(5 +v-9) Flea)=J,o(F, ) b

(%+V.V)GN(t,x)=J,,’(F)6N(t,x)+61(t,x) (1.2)

where J,(F, F) and J,’ (F) are Boltzmann integrals and the linearized collision operator, and
8I (t,z) 1is the Gaussian random field with zero mean value and the correlation function
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81 (24, 7)) O (g, 29)) = 8(t; — &,) 8 (v; — v)) D [F, F; vy, Vo) = (1.3
8 (ty — ) 8 (vy — 1) {Jow, (F, F) + 8 (vi— vo) Iy (F, F)—

Vo (F) + o (F)I F (1, ) 8 (vy — va)}

where J,. (F, F) is the "nonintegrated collison integral" whose definition is given by formula
(23.12) in /3/. Equations /1.1/ and /1.2/ with formula (1.3) constitute the mathematical

basis of the considered here kinetic theory of hydrodynamic fluctuations in inhomogeneous gas
streams,

The fluctuating collision integral 6/ in (l.2) is independent of ON and is, thus, an
"external" fluctuation source in the Boltzmann equation linearized with respect to small de-
flections of phase density ON from its mean value F. By virtue of (1.3) its statistical
properties depend on the extent of the gas nonequilibrium. It is important to point out the
part played by individual texms in expression (1.3) in the formation of statistical structure
of the random field 6N. Using Eq.(l.l) we can represent the last three terms in the right-
hand side of (1.3) as

§(t1—t) (% + 2 [vi-Vi—Jo, (F)])ﬁ(ﬂh—'xz)F (t1 21) (1.4)

i=1,2

Taking this into account we obtain for the simultaneous fluctuation correlator the representa-
tion

BN (t, z)ON(t, ) =0z, —x)F(t, z) +g(t, z1, ) (1.5)
and for the three-dimensional correlation function g the equation
F] ,
(37 + X Ve T3 () 8 (21 2) =8 (12 — 1) Ju (£, F) (1.6)

i=1, 2

Thus in (1.3) the effects related to statistical links between nonequilibrium gas volumes
distributed in space are associated with the term Jows - In the state of local thermodynamic
equilibrium J,, =0 and Eq.(1.6) has a trivial solution which ensures the three-dimensiocnal
space O -correlation of simultaneous fluctuations, related to the last terms in (1.3). At
small deviations from the local thermodynamic equilibrium formula (1.3) ensures the appear-—
ance of nonequilibrium additions to the & -correlated part of the equilibrium formula (1.5)
with the simultaneous generation of spatial statistical links (gs=0). The successive taking
into account of spatial correlations in the hydrodynamie limit is of fundamental importance
in the investigation of gas stream structure near the stability threshold /8,9/, and is a
feature of the present investigation which distinguishes it from known investigations /5,6,11/
in the kinetic theory of hydrodynamic fluctuations.

Let us pass to the hydrodynamic description of transport and fluctuation processes in a
nonequilibrium gas. From (1.1) we obtain the system of equations of transport for mean values
of hydrodynamic fields /12/, whose abbreviated form

L ult, 1) + Ou (@) =Ho (i),  a=0,1,2,3,4 (1.7

is used subsequently. We denote by O, and H,y the linearized operators
Oup’ (D 1) 2 (r)=(z, 955) Oa (D; 1), Hop (@; v) 2 (r)=(z, 95, Ha (@0
where

(7 aEs) = Sd"z (¢') 8/8@5 (r), Ho=0, Hy= —(miy'V,Py, k=1,2,3, Hi=— n (Vg + P Viily)

8/6®g (r) is the functional derivative, @ = (@, ®@;, Oy, D5, Ds) = (7, Gy, By, 35, ¢) are mean
values of density n, of hydrodynamic velocity uy (k= 1,2,3) and of thermal energy e = 3kT/2
@, (@) is the nonlinear Euler operator, and §; and P,, are mean values of the heat flux and
of viscous stress deviator. Here and below recurrent Latin subscripts indicate summation from
1 to 3, and the Greek ones summation from O to 4.
Using the system of additive collision invariants

‘Po = 11 ﬂ’k = ﬁ_lck (k = 17 2! 3)v 1~|74 = p1 (mc' - é)! &y = Uy — ﬁk

we represent fluctuations of hydrodynamic fields 8@, = 8n, 8Dy = 8uy, 6@, = 8¢ in the form

G(Da (tr l‘) = SdVIIJaﬁN (t, r, V), a=0,1, 2, 3, 4 (1.8)
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Formula (1.3} implies that the realization of the random field &7 (4, Z) belongs to phase
function subspace which is orthogonal to subspace spanning the collision invariants, 1.e.

fdvpedI(t, 2, V) =0, 0 =0,1,2,3,4 (1.9)

hence the calculation of moments of Eq.(1.2) with allowance for (1.8} yields for the hydro-
dynamic functions the system of transport equations

B F) PR 1
L+ 0, (@) 5D =0, 5 ux + O1p (D) 0= — [-,_ﬁ v,p,,,] (1.10)
2 8e -+ 85 () g = — ¥y (Fbxr -+ Puc) buur — 8 [ - Vidy -+ — PVt
¥l op (D) 8@p = — Vi (PO41 + Pir) By — {7-; ¥y + = PuVilie

where § denotes a linear variation of the quantities appearing in square brackets, for ex-
ample, 8 [n 'PuViul = —#%nByViu, + 7 38P,Vuy + 771F,Vidu,; the mean value of heat flux §y, of
the stress tensor Py, and of their fluctuations &gz and &8P, are defined by the form-
ulas

gxfhv) ——-% S dveyeF (t,z), Pt t)=m S dv(ee). F (. 2) {1.11)
8y (6 1) = 5 dec,,c%mv (t.2), 6Pyt r)= de\r (cxc2)s 8N (2, 2)

where (ae)s = 27t (exe; + ciex) — 3718ych.

To close the transfer equations (1.10) and (1.7) it is necessary to determine the func-
tional dependence of §, and P,; on @, and Ogy and &Py on D and 8@ . as shown in
/12/, the first of these problems is solved by constructing standard solutions of Eq.(l.l1).
The Chapman—Enskog method yields §; = —AV,T, Py = —2ij (Vill),, vhere A =A(T) and 7 =n(T)
are the coefficients of thermal conductivity and viscosity, that are the Fourier and Newton's
laws, with an accuracy to terms of the order of K (the Knudsen number). To utilize this
result it is necessary to modify in Eqs. (1.10) the Chapman— Enskog method in its application
to the stochastic kinetic equation (1.2), to derive its standard solution with the same degree
of accuracy {of the order of K), and calculate in that approximation fluctuations of thermo-
dynamic fluxes, using formulas (1.11). The execution of this scheme is given below. Ite
basic result is the derivation of formulas

8qx (¢, ) = (P& + Py) 8uy — 8 [A (Vi T1 + 80y (2, ¥) (1.12)
8Py (8, 1) = —8 [2n (T) (View)),] + 610y (2, 1)
where 8Q, and 60, represent external sources of the heat flux and stress tensor fluctua-
tions, which are random Gaussian fields with zero mean value and the correlation functions

(80 (1) 8Q: (2)> = 2kTR6 (1 — 2) | 8 + - _"iu.] (1.13)

(BT (1) 8L, (2)> = 44T76 (1 — ) EER 81 +- T |
<8Q, (1) 811wt (2)) = 2276 (1 — 2) EXigy

where the arguments 1 and 2 of functions denote the sets (i, r,) and (fy, ¥), and P is the
hydrostatic pressure

1
Efy =5 (1 + 8Byx) — - 0x:b,

Taking into account formulas (1.12) and the Fourier and Newton's laws for g; and Py,
we transform Egs.(1.10) into the linearized Navier--Stokes— Fourier equations

2 800 (1,1 = [Hap — 8251 805 (1, 1) + 86 (t. 1), 0=0,1,2,3.4 (1.14)

with the random external sources §6G

8G, =0, 8Gy = —R W, My, k=1, 2, 3, 8G, = —i W, 8Qy — 7 1811y, Viilx

For a homogeneous gas (7 = 0, P = 0) formulas (1.13) become the known expressions of the
fluctuation~dissipation theorem for the correlators of equilibrium fluctuations of thermo-
dynamic fluxes, which were first obtained on phenomenological grounds /7/ and, also, in the
kineti; jheory for the thermodynamical equilibrium state /13/ and for the local equilibrium
state /5/.
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The new result of this investigation is the determination of nonequilibrium additions
P, /p in the first two formulas of (1.13) and of the last formula (1.13). These formulas are
generalizations of relations for the hydrodynamic evolution stage of nonhomogeneous gas. Note
that they do not contain physical parameters other than % and 7.

From Egs. (1.14) and formulas (1.13) we can obtain the representation of the simultaneous
two-point moment of the hydrodynamic field fluctuations {(8®q (¢, r,) 6@p (¢, 1,)) in the formof the
sum of 8 -correlation term be® (f, 11, ) and of the space correlator by (¢, v, r,) which
is conformity with (1.5) are defined by formulas

b = 6 (11— r2) j.dV1ﬂ’a(V1)‘PB(V1)F (t, 21}, b%:gd‘&d\'z\l’a(vl) Wg (va) g (1.15)

(F and g are the standard solutions of Egs.{l.1l} and (2.6), respectively), and, also, to
derive a closed system of hydrodynamic eguations for beg®. The derivation of these egua-
tions is fairly cumbersome and is omitted here. It is, however, important to note that the
nonequilibrium additions to bep® in the form of F; and F, that correspond to locally equil-
ibrium distribution in (1.15) prove to be quantities of the same order as the nonequilibrium
correlator by (for a homogeneous gas beg® = 0). It is, thus, necessary, when extending
the Onsager method of calculating hydrodynamic fluctuations to the nonequilibrium domain of
initial conditions to the linearized Navier— Stokes— Fourier equations for the two-transient
moments of random fields O®, (4, r) must be specified in the form of the sum  bg® + bep”
where the spatial correlators be'? are determined by formulas obtained beforehand as the
result of solving respective inhomogeneous equations.

The difference of the obtained here results from those in /5,6,11/ which dealt with the
kinetic theory of unbalanced hydrodynamic fluctuations should be noted. For instance, only
equilibrium terms were obtained in /5,6/ in formulas (1.13) (the Landau—Lifshitz formulas).
The erroneous conclusions in these investigations are due to several causes. In /5/ the cal-
culation of correlator <3781y formula (1.3) did not contain the term J,, without which it
contradicts the laws of conservation. Owing to this the author of /5/ had to limit the analy-
sis of formula (1.5) to the case of F=F, i.e. to neglect, in fact, all effects of unbal-
ance. In /6/ the projection method, whose application is apparently limited to the domain of
small deviation from equilibrium, was used for the derivation of hydrodynamic equations. In
the extension of the Onsager method to the domain of nonequilibrium states the 6-correlation
of simultaneous two-point moments of fluctuations of hydrodynamic fields was, in fact, post-
ulated in /11/. Because in that paper spacial statistical links (%3:=!» were not taken in-
to account, the conclusion was made about the fluctuation intensity level being normal near
the hydrodynamic stability threshold, which contradicts experimental data and the result pre-
sented in /5/. Actually at the stability threshold it is the behavior of spatial correlators

5  that is anomalous.

B

2. Solution of the stochastic equation (1.2) using the Chapman— Enskog
method, The class of standard solutions of the gaskinetic Boltzmann equation (1.1) by the
Chapman — Enskog method is asymptotic in the domain of low Knudsen numbexs K — UL, where [
is the /mean/ free path length and L is a characteristic macroscopic length scale. Applica-
tion of this method to the solution of the stochastic kinetic eguation (1.2} necessitates a
preliminary analysis of the order of magnitude of its individual terms in the space-time scal-
es that are characteristic of the hydrodynamic stage of gas evolution. The estimate of the
magnitude of phase density fluctuation 8N relative to the mean value is essential. In the
linear theory &N is assumed small in comparison with F. A more rigorous estimate for
thermedynamic equilibrium state (g = O): 8N ~ VVTL*F, , where ¢ = V/N° and V is the system
volume, is obtained from (1.5). There are no physical grounds to assume any significant dif-
ference of fluctuation intensity in various states on a continuous thermodynamic branch. Hence
the relation GAfna}fJQZFF is used below also for nonequilibrium but stable states. This rela-
tion is only violated in the narrow region close to the stability threshold.

The introduction of dimensionless variables V' =th, v =1tv/L, v/ =v/w , where w is the
thermal speed and T = L/w, and of dimensionless functions F' = *w’F and §N' = wy LW6N
leads to the appearance in (1.2) of parameter K, and it is necessary to take into account
the estimate &I = wn}/ L®°8] ~ K- which directly follows from (1.3)}. The formal introduc-
tion of parameter K in Egs.(l.1l) and (1.2) in conformity with the dimensionless variables for
fixing the order of magnitude of individual terms requires the following formulas:

K(%+V.V)F=Jv(ﬁ',F) (2.1

K(‘Z? +v V)ﬁN::J,’(’F)éN A K4S (8, @, K) (2.2)
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where the dependence of 8 on K is, by virtue of (1.3), determined by the corresponding de-
pendence of F on K. In final formulas K is set equal to unity.

The asymptotic expansion F = F, + KF, + K*F; + ... of solution of Eq.(2.1) leads to the
corresponding expansion of the collision operator J,'(F) = J,  (Fo) + KJ,' (Fy) + ... and of the
fluctuating collision integral 8 =8I, + K81, + K8I, + ..., where 81,81, .. are statistic-
ally independent Gaussian fields with zero mean value and correlation functions, respectively,
determined by the first, second, etc. terms in the expansion (1.3) in series in integral pow-
ers of K. The asymptotic behavior of solutions of Eq.(2.2) for K<«<€1 is consistent with
the formal expansion of the form

ON = 6N, + K'6N, + K8N, + KNy + . .. (2.3)

The coefficients of series (2.3) can be determined by the standard Chapman— Enskog method
/12/ according to which the formal expansion (2.3) generates the operator expansion dlot =
34/0t - K':9,/0t +Kdy/ot + ... . The method of determining §,/0t is based on the use of inde-
composability of 80,

§ 0vPebN, = 8,60y, & =0, 1, 2, 3, 4 (2.4)
For the first M terms of series (2.3) this method yields the expressions
N o= 3 3 -3 5:"=§, fd 8N (2.5)
qk=;6qi =Y;“ngvct:c SN, , 5PH—'”§°5P1 =2am v (cxc1)s SN, .

for the thermodynamic flux fluctuations in Eqs.(1.10).
The following formulas:

Fo =n (3m/4 ne')'/' exp [—3 MC'/(46)], Fl == FO h=— Foi_l_l [A,,V,, InT + B.-;V;ﬁ,,]

can be used for F, and F, /12/. In these formulas A;(¢) and By (c) are defined by the
equations

nL, Ay = F, [me®/ (2kT) — */3lex, AL,Byy = Fym (cie)), | (kTY, L,= — n-*FyJ, (F,)

Taking into account these formulas, for the first three terms of series (2.3) we obtain

IS (Fo) 8Ny = 0, J/ (Fo) 8Ny = — 81, J,' (Fo) 8Ny = (94/0t + v-V) 8N, — J, (F) 8Ny — 8, (2.6)
Bl = B> = SIBI) =0 (2.7
BIy (1, vy) 81,2, va)d> = — 8 (1=2) [V, (Fy) + (2.8)

Jo (F)IFob (v — vg) CBI (1, v,) 81, (2, vy)) =

8 (1=2) {8 (vi—vy) Jo' (Fo) Fy + Jupo, (Fy, Fy) +
Joiws (F1y Fo) — 1y (Fo) + 7y, (Fo)l F\8 (vi—vy) +
[T (F) + T (FIN Fo 8 (vy — vy)}

Using formulas (2.8) it is possible to prove that the random fields 6I, and 81, posess
properties (1.9).
Solution of first two of Egs.(2.6) with allowance for (2.4) yields

4
No=F, 20 Vo PebDg =8 (@) Fo (D), o= §dv?F, (2.9)
8N, = i-* F L, 81, (t, 2) (2.10)

The explicit form of operator 4 =4 (8) is of the form &= (8®,95). Its action on
the product of the hydraulic field mean values is similar to that of the fatroduced above
operator of the linear variation 8 on the product of random hydrodynamic fields.

Before proceeding with the solution of the third of Egs. (2.6) it is necessary to deter-
mine operator 48, /8¢ using equations

§ dvi [0t + v-V10 (80) Fo (B; v) =0, 0=0,1,2,3,4 (2.11)

which with allowance for (2.4), (2.9), and (1.9), follow from Eq.(2.6) for 6N,
The integrand in (2.11) can be transformed into (see the Appendix)

[80/t + v-V13No =23 (8@) J,' (Fo) Fy + (30/0t6® + O,50Mg) Foyahs, (2.12)
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. It is obvious that the substitution of this expression into (2.11l) results ie the cancel-
lation of the first term in its right-hand side owing to the orthogonality of J) (F)F, to
the subspace stretched over the collision invariants, and that the remaining terms yield the
relationship 3,0@./3t — —8;300p.

Using the properties of the linearized collision operator J,' (F)Gy = J, (G} F and taking
into account the cobtained expression for 3,0D,/8t, we obtain
[05/88 + v-F1 8N, = 8 (SO, (Fo) F\ = J,) (F) 8N, + ./ (Fo) 3 (5D) F,
whose substitution into the right-hand side of Eq, (2.6) for ON, reduces it to the Form
Jo (Fo) [BN, ~ 8 (6®) F,l = — 81,.
Its cbvious solution is

N, (t, 2) = & (8®) F, (¢, ) -+ 7~* Py L, {t, 2 {2.13)

The substitution of derived solutions (2.9}, (2,10}, and (2.13) into formulas (2.5}
yields, after the determination of integrals of the velocity space, the following formulas:

gl = pbuy, SPKY =0, 8¢l =60, 5P s @
8gf = @ (6 ®) Gy, (D) + Priduy - 805
8PE =3 (20) Fyu (D) + 811

. Ad ; — kr «y
808 ==, deckc‘FoL,,‘M.; <AL S AvABI; (2,15)
80) — 7\ dv (@uen), ol ol =1L S AvBubl, =01

The previously given detexmination of functions A;{e) and By, (e} is used in (2.15) and the
self-conjugacy of operator L, is taken into account, Introdueing the notation 60, = 80,® -+
8Qx  and Sl = 8I1g @ + 8I1;,» and taking into account (2.14) from formulas (2.5) we obtain
expressions (1.12) when M =2 and form the statistical properties of random fields &7/, and

81, , and formulas (2.15) we have the Gaussian properties and space-time & -correlation
of external sources of thermodynamic flux fluctuations &8¢, and &I,

Thus in the zero approximation with respect to K the hydrodynamic equations (1.10) for
fluctuations are linearized Euler equations; expression &q = jfu for thermal flux fluctuations
cancels with the respective term in Eq.(1.10) for 8e. If the mean values of thermodynamic
fluxes are taken into account in the first order with respect to K, their fluctuations must
also be taken into account with the same degreee of accuracy &g = 8q(® 4 8q(V 4- §gi®, 6P = §FP© -
SPM L 5P, The terms &g and &P®" of order K': are purely stochastic and, by virtue of
{2.15}, independent of q and P . It is shown below that they define fluctuation sources in
the locally balanced state, while the terms Og!® and 68P{® take into account, as expected,
the damping of fluctuaticns owing to wviscosity and thermal conductivity, as well as their
simultaneous generaticn by external unbalanced sources G&Q(M and OIIM.

Note that in /3,7/ both terms in the right-hand side of Eq.(l1.2) were assumed to be
quantities of the same order X£~* which, as can be readily checked, corresponds to the false
estimate 6N ~ F and results in an expansion of &N in integral powers of K . However the
hydrodynamic equations for fluctuations are unaffected in the case of thermodynamic equili-
brium state. For inhomogeneous states it manifests itself in the first approximation with
respect to K in that the nonegeilibrium fluctuation sources 80 and sA® remain unaccount-
ed for.

3. Calculation of correlators of fluctuating thermodynamic fluxes. We
introduce the abbreviated notation €, = A, 88, = 5QW, C, =B, 88, == SMI®, { = 0,1, where C(,
and 85 are vector functions, and €, and 8S,(! are second rank tensors. The space-time
correlators of random fields S and OI¥®, i = 0,1 can be expressed, using formulas (2.15),
in terms of correlators of the fluctuating collision integrals 6/, and &/, as follows:

@S (888 (2 = (ALY VdvadviCo (1, v2) € (2, v) <O (1, va) 815 (2, vadd =015 0, b=1,2 (3.1

It is then necessary to substitute into formulas (3.1) expressions (2.8) and calculate the
integrals over the velocity space., Several technical problems are encountered in the process,
in particular in connection with very unwieldy transformations of integrands for i = 1.
Another, shorter path makes possible the expression of correlators (3.1) directly in terms of
standard integral brackets (or Q integrals). For this the expression for function D {F, F; v,,
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vgl in (1.3) must be represented in the form

DIF, F; vy, val= 4 | d0dadb'dty'o (b > 18) F (8 F () % (BebsbyB's v X xBbabi W5 va) 3.2)

It should be pointed out that the standard definition of the integral bracket [W;G] /12/ for
two arbitrary functions W (v) and G (V) can be transformed, using (3.2) into
W; 6= § avW (V) LG (v)=(27%)* { avidvsW (v:) 6 (va) D{Fo, Fi; v1, val (3.3)
% (V1VaVy Vs V) =8 (V — vy') + § (Ve v }—8 (v-¥1) — 8 (v —Va)
where o (v,vy~> v,’vy') is the dissipation cross section. The proof that formulas (1.3) and
(3.2) are identical can be found in /3/, and the validity of formula (3.3) can be directly

verified.
Taking into account formula (3.2) for D, formula (2.8) can be written as

BI, (1,v,) BI; (2, ve)) = 85 8(1—2) DB (v, — vy), i,j = 0,1 (3.4)

D(ﬂ) (vla VS) == D [Fm FO; Vi, vl]s D(I) (vly Vs)=-r.1,:D {Fo, Fl; Vi, Vg}

whose substitution into (3.1) using the definition (3.3) of the integral bracket allows us to

write S
(88 (1) 88V T(2)y =2 (kT)28,;6 (1 — 2) A¥ (€., ) (3.5)

A (€, C) =[Cy; G (3.6)

289 (Cay o) =1Cai ACo] + [Co; RCl — [1; CaCol + [Cai ACI* + [Gos hCa]* — [h; CGI%, 5, 7=0,1, a,b=12 (3,7)

where [.; .]1* is a modified integral bracket which for the three arbitrary functions R (v},
H(v) and G(v) is determined by formula

(R; HOP = S AVR (V) [, (FoH, Fod) + T, (FoG, Fol)] (3.8)

Formula (3.6) directly follows from (3.1) and the definition (3.3) of the standard in-
tegral bracket. Formula (3.7) is obtained substituting (3.4) and (3.2) into (3.1) and in-
tegrating with respect to v, and ve. Then, taking into account the symmetry of o we
separate in the obtained integral expression the terms that can be grouped in the standard
integral brackets with the remaining terms grouped in modified integral brackets. Formulas
(3.5)— (3.7) enable us to use the calculations of integral brackets given in /12/.

The integral brackets in (3.6) define, in essence, the transport coefficients /12/

kA Al=%8u kT [Bu; BatlgzﬁEftl: [Ax; Buyl=0

Formulas (3.5) for correlators of random fields &§Q® and &Y reduce to the Landau—
Lifshitz formulas /9/ and correspond to the first terms in formulas (1.14) and {1.15). Cor-
relators (3.5) of random fields §Q(V, 81 depend by virtue of (3.7) on the mean values on
parameters of thermodynamic fluxes and yield, consequently, nonequilibrium additions to the
Landau-~Lifshitz correlation formulas, The integral brackets that constitue expression (3.7)
for A  appear in the Barratt approximation of the Chapman—Enskog method.

Since we are primarily interested in the qualitative aspects of the gas nonhomogeneity
effects on hydrodynamic fluctuations, we shall use Maxwellian molecules in calculating AWM.
For these molecules all modified integral brackets in (3.7) are zero; [h; BB] = [ B; ABl, 2 [k;

AA) = 3[A; kA, [h; AB] = [B; k4], and the nontrivial contribution to (3.7) is provided by the

braciiets
4 -
(Bri; hByl =—= (kT)™ 2P, ELE; (3.9)

IAk; kAl] = "5‘:-'&—" (kr)’l'ipk;

[Bu; A\ = 2L (kTy*ng,EX

Substitution of these expressions into {(3.7) results in that in {(3.5) we cbtain for i =
j =1 formulas that are the same as the second terms of the first two expressions in (1.13)
and as the third of formulas (1.13). Since the expressions in (3.9) are bilinear with respect
to transport coefficients, the terms corresponding to them in (1.13) represent the squared
response of the system to thermal perturbations in inhomogeneous stable states of gas.
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Formulas (3.5)— (3.7) for the correlators of external sources of thermodynamic flux fluc-
tuations are most comprehensive and are valid for any intermolecular interaction potential in
a simple gas, and are compatible with the condition of existence of the collision integral.
The formulas in (1.13) represent the estimate for (3.5) that corresponds to the first approxi-
mation in the expansion of integral brackets in (3.7) in Sonin's polynomials (Maxwellian gas).
Note that the general form of dependence of correlators of external thermodynamic fluctuation
sources on mean values of thermodynamic fluxes, specified by formulas (1.13) applied to all
subsequent approximations. Hence estimate (1.13) for (3.5) is evidently reascnably accurate.

Appendix. The cumbersome computations involved in the direct proof of formula (2.12)
can be avoided by using the expression /ot = (8,B,/0t, d5,) + (3:0D,/3t, 85q ) which is directly im-
plied by the definition of operator 3a,at: *

a, = .
LT‘; +VV ] B, = (0Bqi0t, B ) BVo-+ V-VONy -+ (2u00q/0t, 9y, ) OV
With allowance for (2.9) we carry out differentiation in the second and third terms and
obtain

V-VON, = 3 (8D) v.VFy, (2,00,/0t, '364:,) 0Ny = (8,6M,/0t, aq;a) Fy
Using the relations

8 (3D) (8, D at, aiﬁa) Fy= —8(5D)(8,, 6%) Fo= — (8,480, a%) Fy— (8 aaa) 3 (3D) Fy = — (8,84, 95 a) Fo+ (3D 0t 6502 3N,

in which the equalities aﬁ)a{at= — 8, [P] and 4(3®) 0, {d} = ;56!11& are taken into account we
reduce the first term to the form

= 2, 4 3
(@®ot, 3 c? BNy = 2 (8D) 58 Fo -+ (8, 00 aaa) Fo
with
[} ; [2 . d 59 ' _\p
| o v-9 oo = 2 00| S0 4w [Fo-+(| 8up 35 52 +00g3%5 |- 25 ) o

Using here the equation [g,/8t+ v-VlF = Jy (Fo) Fy which respresents the first approxima-
tion of the Boltzmann egquation with respect to the Knudsen parameter, we obtain relation (2.12).
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